Zach Horton

Introducing the Mercury: An Infinitely Extensible, Open Camera System


machining the Mercury prototype

Machining the original Mercury prototype

After over two years of development, I’m very excited to announce the debut of the Mercury, a fully modular, open, universal camera system. For years I’ve been tinkering with cameras, machining custom parts, modifying existing designs, and generally experimenting with the technical possibilities of still photography. Eventually, a “maker quest” took shape, for purely personal reasons: the fabrication of the perfect camera. For me, at the time, that meant a relatively small, compact, hand-holdable camera capable of shooting a full 6x9cm frame on 120 film. That’s standard medium format film, which has a fixed height of 60mm but no fixed width: it is up to the camera and lens system to determine how much width to use for each frame. Most common today is 645, which uses only 45mm of film width, utilizing it as the vertical dimension of the frame. Older but stouter cameras, such as the venerable Hasselblad, Pentacon 6 (about which I’ve written extensively here) utilize a square 6×6 (cm) frame. Some professional cameras from the end of the 20th century shoot even larger frames, 6×7, but are themselves so enormous and heavy that they are often referred to as “boat anchors” by photographers. I wanted to do 6×9, a format popularized by Kodak in the 1920s (for which they invented 120 roll film). 6×9 “folders” were popular through the 1940s as amateur cameras, before being replaced by the new flood of 35mm film cameras once film stock became “good enough” to shoot on such a small negative. Folders were very limited, with only one lens and an often awkward mechanism by which they would fold out and lock together into their final form when you wanted to shoot—a delicate state not conducive to protection or focus accuracy. I love these cameras, but they would not satisfy me: I wanted my camera to be able to take nearly any lens, and to be rugged.

The Mercury, in medium format film mode.

The Mercury, in medium format film mode.

Professional cameras that could shoot 6×9 were made by Graflex in the USA, Linhof in Germany, and Horseman in Japan, but their heyday was in the 1960s, and they mostly faded away after that. And most of these cameras were fairly large and heavy, invariably made of metal, and contained a lot of options and controls that, for me, added too much bulk. Plus, most of these cameras were too thick to take ultra wide, non-retrofocal lenses. These special lenses, for the ultimate in wide angle photography, require an extremely thin camera; they are made for so-called “technical cameras” that generally cost multiple thousands of dollars. So I set out to make my own. I machined various parts from various cameras, but to make everything fit together, I ended up having to 3D print a number of components. When I was done, I ended up with an awesome prototype, and a revelation: I could create a version of this camera entirely from plastic components and it would be far more flexible, extensible, and lighter, as well as sharable by a community of users. So I set out to make a fully modular, open camera system based upon standard components that anyone could modify, replace, and upgrade for new functionality.

medium format rear right

The Mercury, in medium format film mode, sporting a classic Horseman 6×9 roll film back.

Slowly, a system began to come together that was, I hoped, truly revolutionary. On one hand it was a camera that could do anything, theoretically: any module could be modified or replaced to allow compatibility with some past or future part that already existed (19th century lenses, 21st century digital backs, new and old instant film formats, Hasselblad film backs, etc.). This was truly a rhizomatic camera: it could connect anything to anything else. But it was, I felt, more than that: it was also a form of hardware development that was fundamentally anti-corporate. It was meant to follow an open source software model of open community development coupled with new distributed manufacturing techniques such as 3D printing and low-volume injection molding with innovative materials, and the collective potential of crowdfunding (Kickstarter, Indiegogo, etc.) and social media. This would be hardware development for the 21st century: distributed but centrally organized, driven by the very dynamics that make a community vibrant, without profit motive or exclusionary intellectual property (the double helix of contemporary capitalism). In short, the Mercury was a unique photographic tool, a platform for hardware development and creative experimentation, and a socially driven, user-innovator system with hardware, software, and social components inextricably linked.

The Mercury, in medium format film mode, sporting a Mercury modified Instax Mini back.

The Mercury, in medium format film mode, sporting a Mercury modified Instax Mini back.

Along the way, I started working with Andrew Duerner, a robotics engineer in Goleta who is a true master of 3D design, printing, and assembly. He developed our breakthrough focusing helical unit, which takes nearly any lens and allows the user to focus it if, like view camera lenses originally made for bellows cameras, it lacks a built-in helical. For lenses that have a build in helical but lack an internal shutter (such as many medium format “system” lenses by Mamiya, Pentax, etc.), we have adapter kits that adapt the lens to a standard large format shutter (either the Ilex 4 or Copal 3), and then adapt that shutter to the camera, at the correct flange distance for that format.

The other members of the team include my dear friends Joe Babine (a veteran machist and master craftsman) and Alexandra Magearu, who has extensively tested, evaluated, and re-designed the camera’s ergonomics and aesthetics.

The Mercury, in Large Format (4x5 inch sheet film) mode.

The Mercury, in Large Format (4×5 inch sheet film) mode.

As I write this, we have one week left in our Kickstarter campaign. I do not yet know if the campaign will result in the project being funded or not. If it isn’t, we’ll reach out to users in other ways. If it is, we’ll be able to afford the tooling to create injection molds for the most common parts, which will bring the cost and manufacturing time down to the necessary level to make this system available to users on a significant scale, as well as optimizing the system itself so that each part is made in with the best method, imparting the optimal characteristics (surface finish, flatness, and strength for molded parts, flexibility and customizability for 3D printed parts).

Already, the Kickstarter campaign has been incredibly rewarding. I’ve received messages from photographers all over the world, with all sorts of wild use scenarios: adapting nineteenth century lenses for medium or large format, using their favorite lenses to shoot Instax, coupling non-Hasselblad lenses with Hasselblad backs, shooting high-end digital, etc. It has been incredibly rewarding to hear about all of the things folks want to (and will) do with the Mercury: this is what has made it truly open and universal.

The Kickstarter campaign can be viewed here. Your support is greatly appreciated!

A photograph taken with the Mercury on large format sheet film: Kodak Portra 400, with a vintage Kodak Ektar 127mm f/4.7 lens.


A concrete slab, gleaming like the surface of a lake (and begging for a dance party), now permanently masks the material layers and labor that consumed our first three weeks on site. Let’s peel back the concrete for a glimpse of the ingredients:


1. A maze of metal rebar. I thought we would never find our way out!


2.  A rain of gravel.


3.  A layer of  extruded polystyrene foam plus a vapor barrier of visqueen to insulate our slab from heat loss and protect it from moisture, in preparation for the radiant floor heating system.

fitting around the plumbing


4. Radiant floor heating tubes snake across our metal rebar grid, resting on a bed of sand. They hook into a console that peeks above the finished slab, which connects to a solar water heater and allows us some measure of future control. But like every layer encased in concrete, we had to get this one absolutely right:





A snake and dragon, among other wildlife.


5. And finally, on a gorgeous misty and very early morning, the concrete trucks arrived (after a requisite hour spent lost in the mountains). Our footings were massive due to the mud churned up by several unexpected storms. It took seven trucks to completely fill the foundation for the domes.









It’s been an exciting week up at Oakridge, where Jess and I, along with both professionals and other amateurs, have been forming the foundation of our eco-retreat house.  As the last post revealed, much of the floorplan involves curves (domes and arches).  This makes for an odd foundation and a lot of curved forming boards!  Let me tell you, those aren’t easy to bend!  Each is accurate within an eighth of an inch in vertical and radial dimensions (to achieve the latter we measure from the vertex or center of the dome to every point along its curve). Working with curved materials has forced us all to work and conceive of the construction process in new ways.  Rectilinear forms have a certain logic that can be satisfying: right angles, straight lines, corners… these reassure us that there is solidity to a nailed form, a joint, an edge.  Curved shapes are more difficult to measure, seem more fragile, more indeterminate.  Difficult to nail down. Of course this is just a psychological prejudice: curved forms are significantly stronger (varying with the direction of the force) than rectilinear structures.round foundation forming

On our second day of forming, a sudden hailstorm erupted out of nowhere, sending us scurrying for shelter!  This was followed by torrential rain the likes of which we normally only see on a few of the craziest days of winter.  The result: footings filled with water.  Our clay-thick earth percolates very slowly, so we had to pump the water out with a rented pump.  Another day and a half of intense work followed, only to be interrupted with the sequel: an even-greater downpour of hail and rain.  More pumping.

Working on this site is exhilarating. To spend extended time outside (in a place so beautiful we never want to leave), doing work that is directly measurable, to see our imagined structure sinking into and rising out of the earth–this makes the two years of planning worth it.

On Monday, in between the two storms, we were rewarded with a rainbow rising out of the valley that our site overlooks.  Another curve.




Building, Thinking, Dwelling

As I simultaneously plan my move from Santa Barbara to Pittsburgh and get ready to build a retreat house with my sister in northern California, the notion of dwelling has been on my mind. What does it mean to dwell, to call a place “home”?

In a late essay, “Building, Dwelling,Thinking,” Martin Heidegger links dwelling to thought and building. To build, or to think, one must first dwell, which is to say inhabit a particular relationship with space:

“The nature of building is letting dwell. Building accomplishes its nature in the raising of locations by the joining of their spaces. Only if we are capable of dwelling, only then can we build.” (Poetry, Language, Thought 157) Similarly, thought belongs to dwelling as an ordering of space.

I think this is right. To dwell is to inhabit a place, in body and mind: to be sheltered by it, to be sure, but also to mend it, modify it, shape it, explore it, contemplate it, meld with it. As Virginia Woolf famously proclaimed, every woman needs “a room of one’s own” to properly develop as a thinker and creator. Such a dwelling place affords privacy, or relative protection from the tumult of the world and the thoughts and demands of others. Shelter, in this sense, fosters independence and creativity by providing a break in the affective, material, and ideational flows of our culture, introducing stoppages that allow for mutations. Creativity.

This is not to say that thought develops in a vacuum; to dwell is to engage one’s surroundings and thus also to give up some forms of agency. Dwelling is a being-with. What all should be included in this circle of cohabitation? Physical structures, ideas, affects, animals of many sizes and types (including other humans), plants, pollen, textures, surfaces…


Near the build site.

There are many different possible relationships that one can form to one’s dwelling, and social relationships that can form within and around it. Nomadic peoples trace patterns on a landscape by moving through it; not the individual place or structure, but rather this larger map of habitation, constitutes the home. Nomadic living is also nomadic thinking. Likewise, farmers dwell in part by rethinking the land around them, narrowly circumscribing their resources and range to produce something new.

In the US, at least since the 1930s, the average home has grown steadily in size even as it has housed fewer people. In the 1940s it became a stagnant site of middle class consumption (occupied by a nuclear family, the basic Keynesian consumptive unit in Postwar America) which is being partially restructured today as a neoliberal site of self-improvement and flexible workspace (the home office).

How houses are conceived, built, and dwelled in is determined in large part by the relative availability of energy. The postwar nuclear family dwelling was made possible not only by a particular ideology and economic system, but by the availability of inexpensive (for the consumer) energy. See John Perlin’s Let it Shine: The 6,000-Year Story of Solar Energy for a history of innovative solar programs, technologies, and building materials for the home that were more or less scrapped in the postwar period when vast housing tracks made with cheap, mass-produced, energy efficient materials became the norm. For developers, it made more sense to build large and cheap, and then make up the difference in energy requirements by slapping on complex HVAC equipment to heat and cool the homes in perpetuity. Dwelling in this mode meant being plugged in to a vast system of petroleum extraction, refinement, and burning, ensuring the necessary supply of gas and electricity in exchange for the perpetual flow of money back into utilities. This more or less remains the equation in the US today, despite dawning awareness of our global ecological crisis, economic hardship, and the increasingly high cost of burning post-peak oil, dirty coal, and dangerously difficult to capture natural gas.

Given these conditions, it may seem shocking that the majority of new houses are built for yesterday, not tomorrow. There is something conservative about dwelling, as if our large, empty houses and always-on temperature control will somehow stave off the destruction of the planet, ongoing outside. This is building and thinking cut off from dwelling.


One view from the build site.

With this in mind, my sister and I set out, a little over two years ago, to conceive of a house for the future. One that wouldn’t take energy for granted. One that would serve as a dwelling place in the fullest sense: a place to live in, live with, and think among. Our basic guidelines were that it must serve the future needs of others, at least 250 years into the future, must not rely upon petroleum-based energy, and must be a dwelling place that inspires creativity, not utilitarian grimness or hermetically sealed escapism. With these constraints in mind, we were forced to design far beyond our own needs, and our own lifetimes. Such a dwelling place must be tough to last so long, but it must also be supple, flexible in use, to remain capable of meeting the unknown.

In the end, after a long collaboration, we chose to build two half domes, constructed out of a shell of concrete (dome structures are the strongest possible from an engineering standpoint, and thus require far fewer materials than equivalent rectilinear structures) and mostly buried in the earth. Not wooden boards and siding and shingles to keep the elements out and the heat in, but soil and wild grasses. Building out of wood ensures horrifically poor energy efficiency. What you save (in environmental as well as monetary cost) in the production of materials you lose many times over during the lifetime of the building to petroleum energy production in order to keep it warm and cool. Our structure will require far less energy to maintain, as it will heat and cool itself. One large retaining wall, facing south, will gather through many windows the heat of the sun in the winter. In the summer, the house’s under-soil condition will keep it cool without air conditioning. When additional heat is needed, it will be generated from solar thermal collectors that will turn sunlight (even pale winter sunlight) into hot water, stored in a tank inside and distributed throughout a radiant floor to keep the structure warm. When there is no sun, a powerful electric water heater will make up the difference. A solar photovoltaic system will generate the electricity for such needs. Will all of these advanced techniques cost a fortune. No; this house will cost significantly less to build than a traditional structure.

Most importantly, this will be a space unlike any other. One half dome will have no “walls” at all; it will be a large Great Room for meeting, working, cooking, relaxing, and viewing the beautiful valley below our building site in the mountains of Mendocino County. A short passageway will connect to the second dome, which will provide the “room with a view”: private rooms to sleep, work, contemplate. Fewer flat walls, and almost no conventional ceilings, will provide a new sort of space to think in and with. What sort of thoughts will such a space generate? We cannot yet know.

We are building this as a retreat house, because it only seemed right to share this with a collective of individuals who want to partake in its construction and maintenance. No one person, at least for the foreseeable future, will monopolize this space. It will see a constant infusion of new dwellers, new purposes, and new ideas.

I will always maintain a dedicated page on this site to the house, which can be accessed here. I will also continue to blog about it as we build it (we start on the foundation next week, but the extended process will continue for at least another year) and learn to dwell within it. If you wish, you can join us.

Academic Jobs and the Alchemy of the Future

After a year and a half of navigating the torturous academic job market, I accepted a tenure track position at the University of Pittsburgh, as a media scholar in their English department.  I look forward to continuing my work at this institution, which seems to be very supportive of the many strange things that I do.  I want to take this moment to reflect, however, on the nature of this academic job market that is far less kind to most.

Academia serves a number of social functions, from education (disseminating the world’s storehouse of knowledge, teaching students how to think critically and produce new knowledge) to basic research (investigating the world) to applied research (figuring out new ways to do things: innovation) to community outreach, etc.   In our neoliberal economy, the value of academia is often framed in terms of employment.  From the student’s perspective, the academy makes her employable (or more desirable as an employee); from industry’s perspective, the academy ensures an unending supply of fresh workers.

In the humanities we frequently debate the degree to which the university should be framed in neoliberal terms.  After all, shouldn’t we (as a society) value knowledge for knowledge’s sake?  Shouldn’t we be promoting activities that will make society better, even if that means researching and teaching in fields and subfields that are of little interest to capitalists?  Shouldn’t we be producing citizens that can think and act beyond the confines of neoliberal capitalism?  Rather than serving the interests of power, shouldn’t knowledge be revolutionary?

There are a lot of things universities, students, and the general public can do to de-neoliberalize the university, but I won’t go into those here.  I simply want to acknowledge a white elephant that haunts such efforts more generally (and particularly in the humanities): the university is, as one of it’s most significant functions, an employer.  This is particularly significant for those who are determined to speak truth to power instead of enrolling themselves in power’s commodity factory.  The university employs researchers and teachers who are working for a greater good (even if a nebulous, future-tense good) instead of feeding  some company’s bottom line.  This is an absolutely vital function, not only for the academy, and for future students, but also for society as a whole.  Just as seed banks preserve the world’s biodiversity against the potential calamities of monoculture, academia (at its best) preserves and builds on ideas and knowledge that, while not useful to the rich and powerful of today, must nevertheless (in fact for that reason) be nurtured until their time is ripe.  This is reason enough to de-neoliberalize the university, but I digress.

Just about everyone in the humanities knows that the academic job market is broken.  For one thing, the university is structured as a pyramid, with relatively few professors (along with many adjunct faculty members) overseeing many more graduate students than can ever join their ranks, who in turn do a great deal of the teaching of many more undergraduates than can ever join their ranks.  None of this is a problem if you consider the university’s role to be an employment feeder for capitalistic enterprise.  But when research and teaching revolve around those areas of less interest to capitalists (such as basic research in science, philosophy, or cultural analysis), the system needs somewhere for its best and brightest to go.  Many of the best and brightest currently have nowhere to go.

Most universities are making this problem worse rather than better, by making the following mistakes:

  • Placing too much emphasis on partnering with business and subordinating their functions to the needs of those businesses.
  • Placing too much emphasis, in student recruitment and other forms of official discourse, on employability rather than radical innovation and thinking–in other words, the production of new ways of life outside of corporate employment.
  • Formulating job calls according to the categories of the past rather than the open-ended categories of the future (in the humanities, this takes the form of asking for rickety categories tied to specific time periods and regions).
  • Maintaining, in the formation of new jobs, rigid disciplinary boundaries.


Faced with hesitant, conservative job ads, the great thinkers and researchers of tomorrow, facing terrible odds, are forced to become neoliberal themselves.  They stop taking risks, endlessly prep themselves as salespeople, learning how to narrativize their own interests and research into the narrow categories of official job vacancies.  At best, this diverts attention on all sides away from innovative potential scholarship.  At worst, it irreparably impairs scholarly creativity, innovation, and boldness. The process of neoliberalization does not begin when a promising scholar enters the academic job market, but much earlier, when considering what to study and how.  The job market is like a narrow sluice whose primary effect is not the dividing of the river, but the dividing of the headwaters.

What kind of academic jobs should we be creating, promoting, and supporting?  Innovative jobs that break down disciplinary boundaries, mix time periods, cross borders and are open to new methods and ideas.  It is not a question of “modernizing” these jobs to fit the needs of today’s business or today’s cultural trends (for the oldest ideas, objects, and cultural forms are often the most radical), but promiscuously mixing categories both old and new, with an eye on the future.  Rather than endlessly rehearsing the same categories of knowledge, we need to take seriously the academy’s role as idea bank for a future society.  We need a little more alchemy in the academic job market.  And we need to make alchemists a little more welcome.

« Older posts

© 2016 Convergence

Theme by Anders NorenUp ↑